Quasi-Newton particle Metropolis-Hastings?

نویسندگان

  • Johan Dahlin
  • Fredrik Lindsten
  • Thomas B. Schön
چکیده

Particle Metropolis-Hastings enables Bayesian parameter inference in general nonlinear state space models (SSMs). However, in many implementations a random walk proposal is used and this can result in poor mixing if not tuned correctly using tedious pilot runs. Therefore, we consider a new proposal inspired by quasi-Newton algorithms that may achieve better mixing with less tuning. An advantage compared to other Hessian based proposals, is that it only requires estimates of the gradient of the log-posterior. A possible application of this new proposal is parameter inference in the challenging class of SSMs with intractable likelihoods. We exemplify this application and the benefits of the new proposal by modelling log-returns of future contracts on coffee by a stochastic volatility model with α-stable observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quasi-Monte Carlo Metropolis algorithm.

This work presents a version of the Metropolis-Hastings algorithm using quasi-Monte Carlo inputs. We prove that the method yields consistent estimates in some problems with finite state spaces and completely uniformly distributed inputs. In some numerical examples, the proposed method is much more accurate than ordinary Metropolis-Hastings sampling.

متن کامل

Metropolis - Hastings Sampling Using Multivariate Gaussian Tangents

We present MH-MGT, a multivariate technique for sampling from twice-differentiable, log-concave probability density functions. MHMGT is Metropolis-Hastings sampling using asymmetric, multivariate Gaussian proposal functions constructed from Taylor-series expansion of the log-density function. The mean of the Gaussian proposal function represents the full Newton step, and thus MH-MGT is the stoc...

متن کامل

Comparing Two Recent Particle Filter Implementations of Bayesian System Identification ?

Bayesian system identification is a theoretically well-founded and currently emerging area. We describe and evaluate two recent state-of-the-art sample-based methods for Bayesian parameter inference from the statistics literature, particle Metropolis-Hastings (PMH) and SMC, and apply them to a non-trivial real world system identification problem with large uncertainty present. We discuss their ...

متن کامل

Distributed Implementations of Particle Filters ∗

Particle filtering has a great potential for solving highly nonlinear and non-Gaussian estimation problems, generally intractable within a standard linear Kalman filtering based framework. However, the implementation of particle filters (PFs) is rather computationally involved, which nowadays prevents them from practical real-world application. A natural idea to make PFs feasible for “real-time...

متن کامل

Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo

Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, decisions and predictions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state space models. There is no closedform solution available for this problem, implying that we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015